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A variational approach to cluster approximations in the 
theory of electronic structure of disordered alloys 

S V Beiden, N E Zein and G D Samolyuk 
I V Kurchatov Institute of Atconic Energy, Moscow 123182, USSR 

Received 25 July 1991 

Abstract. Cluster generalization of the CPA method, based on the variational calcw 
lation of the alloy themodynamic potential, is considered. Various possible choices 
of the vsriational parametem am discussed. One of them leads to an a p p m b t i o n  
that is analogous to the Bethe approximation for the king model. The tedmique 
developed is applied t o  the calculation of the density of states in the Nil-,Cu. alloy 
by the LMTO.ASA method. 

1. Introduction 

The CPA method for alloy electronic structure calculations [I] appears at present to 
be the most reliable one. The method is widely used and numerous applications to 
various alloys are known, including the full self-consistent KKR-CPA density of states 
calculations that are in good agreement with experiment (see for example [2]). In 
the original papers it was already pointed out that this method is a version of the 
mean-field method used, for example, for the investigation of the king model. At  the 
given energy E the expansion parameter is proportional to C - c,cbAU/nE, where n 
is the number of the nearest neighbours, c, and cb are the concentrations of alloys 
constituents, and AU is the difference between their potentials. (See for example [I].) 
In our case this mean field CO(€) is the self-energy of the effective Green function 
Go(€) = Sp[c - - CO(~)]-l. Similarly to the Ising model calculations this mean- 
field parameter can be found either from the condition of the self-consistency (in 
our case it is the coincidence of the effective g0(c) and the averaged Green function 
(GO(€))) or from the condition of the thermodynamic potential (TP) il minimum. In 
the latter case TP is considered to be a functional of CO(€). The equivalence of both 
approaches was proved by Lloyd and Best [3]. 

The cluster generalization of the CPA method was also proposed in [3]. It was 
suggested that the averaged TP R, calculated for the system with definite potentials 
Vi in sites i,, i,, . . . ,in of the lattice, and with the mean potentials CO(€) in other 
sites, should be minimized with respect to these CO(c). Such an approach is similar 
to that for the king model when the interaction J between two lattice sites is taken 
into account directly, and interactions with the other sites are taken into account via 
the field - J(n - 1)u with the further R minimization over the mean spin U. But 
it is known that such an approach usually only slightly modifies the one-site mean- 
field results and in the cases when strong correlations between the neighbouring atoms 
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should be taken into account, another approach-the Bethe approachshould be used. 
The cluster variational method (CVM), which is the generalization of the Bethe and 
Kikuchi approaches, is widely used in the theory of substitutional alloys ordering on 
the lattice (see for example [4]). The  simplified form of the CVM-the cluster field 
method (CFM)-WS proposed in [5]. The necessity of the analogous approach for the 
disordered alloy electronic calculations was emphasized in [ G I ,  

The present work is devoted to the realization of such an approach, i.e. the general- 
ization of the CPA method in the spirit of the CVM approach. In section 2 correspond- 
ing cluster fields are discussed. There are a number of cluster CPA generalizations (see 
for example [7-101 and the literature cited there) but the self-consistency equations 
are not, as a rule, the consequence of any variational principle differing at this point 
from the equations obtained below. As a consequence the proposed earlier conditions 
of the self-consistency are a bit arbitrary. For example the Green function at the 
central cluster site or a t  its boundary is equated to the Green function of the medium. 
More elaborate conditions also exist. The problem of the choice of the proper equa- 
tions appears to be closely related to the analyticity problem, i.e. to the behaviour of 
the Green function in the complex E plane. Only in some cases [7,10] was the Green 
function proved to possess the Aerglotz property. In other cases it evidently violates it 
and for several approaches numerical investigations show that the Green function has 
satisfactory behaviour though this has not been proved analytically. The discussion 
of the equations arising in the variational approach (section 2) shows that a num- 
ber of parameters should be included to restore the equality of the density of states 
gc(p)  obtained via the Green function with that obtained via  the TP Q differentiation 
(gn(p)). This identity is valid for exact Q and cxact averaged Green function and 
is violated when arbitrary self-consistent equations are imposed. Such an inequality 
usually does not permit us to consider one of these g ( p )  as having a physical meaning 
and it may be the underlying mechanism of the analyticity violation. 

The variational principle automatically creates proper equations and the problem 
now shifts l o  the choice of adequate variational parameters. It is known that in the 
case of the many-body theory the variational principle with the self-energy C(E,  h)  
as a variational parameter really brings on the equality of Ihe one-eleclron properties 
calculated thermodynamically and through the Green function [ll]. It will be shown 
below that the CPA can be rewritten in the form corresponding to such an approach 
and it is known that the CPA Green function has the Herglotz property. So we can 
hope that the variational approach with the number of parameters sufficient for the 
maintenance of the thermodynamic identities will give a Green function with the true 
analyticity properties. Of course such a statement can hardly be proved in general 
as the experience of the CFM [5] calculations shows that in large clusters i t  is always 
possible to make the wrong choice. For the two-site cluster in Ni,-,Cu, alloys we did 
not notice numerically any difficulties with the analyticity. 

Generally the variational parameter, i.e. the effective medium description, can 
be introduced in several ways and in section 3 a similar approach is carried out with 
the variational parameters included in the free term of the integral equalion for the 
wave function with the kernel G7(r). The G7(r) Green function corresponds to the 
solution of the SchrGdinger equation increasing along a certain direction y [13]. Such 
an approach is close to the transfer matrix approach widely used in the one-dimensional 
case (see for example (141). 

For the variant which is the analogue of the CFM [5] and appears to be the simplest 
one, the comparison of results for the LMTO-ASA-CPA method with thal in the LMTO- 
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ASA cluster approximation was made for the Ni,-,Cu, alloys. This alloy is thoroughly 
investigated by various methods, in particular by the full KKR-GPA method [Z], and 
can be used for testing new approaches. The cluster approximation in this case gives 
results which appear to be slightly closer to the experiment than the CPA ones, but the 
differences turn out to be negligible. We believe that the use of cluster approximations 
is significant for the investigations of the influence of the alloy short-order on its 
electronic structure [lo] or for the configurational interaction calculations when the 
consistency of the effective medium and of the cluster are important. 

The generalizations of the main equations with the electron-electron interaction 
included in the framework of the density functional (DF) method are also discussed 
in section 2. The variational calculations of vertex corrections to the interaction of 
the electron with the impurity in the alloy are described in the appendix. For clarity 
of presentation we confine ourselves only to the case of the tight-binding Hamiltonian 
with diagonal disorder, but the generalization for the cases of LMTO or KKR methods 
appears to be evident. 

2. Cluster field method 

The model of the binary substitutional alloy described by the tight-binding Hamilto- 
nian H with the diagonal disorder for s, p and d electrons and with the concentration 
of the alloy constituents e, and cb will be considered below. Besides, such an approach 
is equivalent to the LMTO-ASA approach for the case when the bandwidths of both 
constituents are equal [15]. 

The one-electron TP Re for the system with potentials U; in lattice sites i can 
be expressed via the exact Green function G as an integral over the contour in the 
complex plane z [14]: 

-In(l-AUj,Go)] d t - . "  

where Go(.) corresponds to  the Hamiltonian of the a-component host lattice and 
AUia = U; - U,. Tr means the summation over elecron degrees of freedom. Contour 
C is shown in figure l(~). It embraces the cut along the real axis, where eigenvalues of 
the Hamiltonian H are contained. If the contour crosses the real axis at the point /A 

(figure l(b)), then equation (1) corresponds to  the TP of the system with the N = N ( p )  
electrons [3]. As the functions Gt and G- are analytical ones in the upper and lower 
semiplanes respectively, the contour can be arbitrarily deformed in these semiplanes 
(figure l(e)). Only local variational parameters, i.e. those depending on the energy P 
at the point of calculation, will be introduced below and therefore the detailed form 
of the contour is unimportant. After averaging (1) over a random distribution on the 
lattice of the atoms of type a and b, we shall obtain the series in concentration e, 
which is the SI, virial expansion 1141. It is convenient to  count the potential from 
its mean value 0 = (Ui) = c,Ua + cbUb and to introduce the effective mean field 



9654 

C(z, k) = ER [C,(z) exp(ik. R)] in the definition of the medium effective Green 
function 

S V Beiden et a? 

GR(z)  = c C ( z ,  k) exp(ik. R) . (2) 
- -1 G ( z , k ) =  ( z - H k - q z , k ) - u )  

h 

Adding and subtracting ER(€) in various dusters we can rewrite (1) in the form 

Re = no + Eai + E("ij - ai - n j )  + , . , 
i i < j  

&=&Tr&ln[ -~ (z ,k ) ]dz  Qi=-g'Il l J ,  I n [ l - ( y - C , ) q d z  (3) 

where i,, i, are i or j ,  and Vi = U, - 0. Subsequent terms of the equation (3) have a 
cumulant structure and represent contributions to Re from n-site clusters. 

", . I ,  . l"ll,.._ ,.,., , , , ,  
c 

L 
1.1 

c 
(61 i c 1  

Figure 1. Contous of integration in the expression for R.  

Averaging (3) and truncating the series, one gets an approximated z2, functional 
depending on ER(&) which can be treated as a variational parameter. It is worth noting 
that the additions and the subtractions of ER(€) do not change the Hamiltonian H 
and are identity transformations untiI the series is truncated. With only one-site 
cluster terms being held in (3), the corresponding equation has the form [3]: 

ne = 6104- N(S1;) 
-1  

&(z ,k)  = ( z  - H, - go - @) 
8, = E E(=, k) . 

k 

(4) 

In this case only a mean field CO(€) at R = 0 can be included. Minimizing (4) over 
Eo(z) under the condition that this minimum is valid for any deformation of the 
integration contour a t  point z ,  we get 
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This condition can be also rewritten as ( 5 7 ) ( 6 4  - 6,6E0~,) = 0, where the onesite 
scattering matrix K. is introduced. Thus we get the usual CPA equation [3]: 

9 - CO 
1 - (q - &)Go Ti = (57) = 0 

It is worth noting that due to this condition, the densities of states g(E) ,  calculated 
through Green function and through differentiating TP Q, over /I, coincide (11,121: 

Tk Disc G0(p) 
2Ti " ( P I  = - (7) 

where Disc F ( z )  = F ( z  + io) - F ( z  - io) . 'The equation (4) can be rewritten in 
another form, which immediately reveals the coincidence of this 0, with the func- 
tional introduced in [Ill for m-any-body system. The equation (6) is equivalent 
to CO(€) = (q/[l - (Vi - Co)Go]). With this Col&) the sum d of all the skele- 
ton diagrams determined by the condition 6@/6G = C(E)  can be expressed as 
OrGI = Tr({C08, - In[l - (K - C,)C?O]}). We see that (4) has the form of the 
Luttiger-Ward functional 

Thus i t  is proved that the ER(&) variable introduced in (8) as an exact averaged Green 
function self-energy has the meaning of an effective field (4) acting on an electron. 

This duality can be useful for the generalization of the cluster expansion (3) for the 
n-site cluster case. It should be noted that instead of including variational parameters 
in the Green function self-energy one can include them as effective fields in the Q, 
expansion. Similarly to the CFM in the theory of alloys ordering [5], we introduce 
fields 9, which are not simply added or subtracted in the initial Hamiltonian, but 
which are added and subtracted in various terms of the virial expansion for a, in 
such a way that their sum in the averaged Hamiltonian is zero [5]. So apart from 
directly including E(€) in the Hamiltonian, which is natural for the case when C(E) is 
interpreted as the self-energy, we can introduce the field 9, in the expansion (3) so 
that the sum over all clusters disappears. 

For the two-site cluster we introduce two sorts of parameters: CR and I,. CO 
and C, are added and subtracted in the Hamiltonian and are consequently introduced 
into the Green function GR(&). The one-site parameters P, in the one-site cluster 
yield the mean field I = EP, and in the two-site cluster with sites R, and Ri + R 
give the field I - IE at the R, site. We get from (3): 



9656 

where SZ, and eR(&) are as in (2) and (3). We want to emphasize once more that 
it is not possible to introduce variational parameters Q R  at the level of the Green- 
function self-energy, and they must be included directly in TP 0,. Due to the non- 
commutativity of various cluster Hamiltonians the introduction of such fields can cause 
non-trivial variations in the form of the g(c) function. 

To find these fields from the condition of the Re minimum it is convenient to 
introduce the Lagrange multiplier I )  and to vary SZe - q(Q - ER QR) with respect to 

S V Beiden et Q /  

and 'PR independently . Thus we get 

(Gji} = (G?i) (10) 

where C y ( € )  is the Green function defined with potentials Vi either in one-site or 
two-site clusters. Varying (9) over CO and C, we get correspondingly 

i j  

Finally let us write down the expression for the density of states n(p) = -% 

Let us trace the influence of various fields and approkmations on the n(p)  value. 
Without variational parameters the equation (12) gives the expression for n(p) in the 
usual T-matrix approximation: 

Disc 
2m 

n ( p )  = --Sp[Go + Go(ql )Go 

i (Go(x&R)Go - Go(ql )Go - Ga(q!+R)Go)] (13) 
R 

Sp in (13) also means summation over the lattice sites not included in the cluster. With 
the minimization over CO, as was suggested in [3], the joint contribution of (110) and 
( l l b )  causes the replacement of the G ~ ( E )  Green function by G R ( € )  in (13), and 
q; by scattering matrices corresponding to potentials 4 -Co. Nevertheless n(p) and 
-- ?$e, do not coincide: 
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Now the summation in (14) in contrast with (13) is restricted to the sites kl belonging 
to the selected cluster ij (Rj = Ri + R) only. 

The introduction of fields and thus the validity of (10) gives 

Finally, introducing C ,  leads to equation ( l l b ) .  The whole system of equations 
(IO), (lla-c) has the only zero solution. Thus (T;) = (T;) = 0 and n(p) = 
- DiscTr(Go)/(Zri). 

So we see that the inclusion of the q, fields plays an important role ensuring 
the self-consistent variations of the density in the one- and two-site clusters. In 
its turn CO improves the convergence of the (1) series, as G ~ ( E )  is proportional to 
exp[i(e, + C,)'/2R] and it exponentially vanishes when C has an imaginary part. Fi- 
nally, introduction of C ,  makes the averaged scattering matrix (Tij) equal to zero, 
and in turn causes the vanishing of the averaged electron density around cluster sites. 
The disappearence of Ap around the cluster is important for the self-consistent con- 
figurational interaction calculations. 

For the n-site clusters new additional parameters can be included, not only of the 
onesite type such as Q,, but corresponding to multiple scattering at several sites, 
in close analogy with that of cVM [5]. As an example of an introduction of such 
effective non-local interactions, we discuss in the appendix the r (Rl ,  R,, R3) vertex 
calculations for the scattering of an electron on the impurity in an alloy. 

Let us mention the necessary modifications for the incorporation the electron- 
electron interaction into our scheme. In the DF method the potential Vi at every 
lattice site i should now depend on the density pi at this and other lattice sites. We 
add the electron-electron 'double-counting' terms Qee to Re: 

where pi(.) and p i j ( v )  are respectively the electron density in the one-site and two-site 
i j  clusters, @.,b] in the local density approximation (LDA) for the exchange and the 
correlation terms is 

for the electron-electron potential Kei = V,(p,). The potential Ui for every cluster 
contains correspondingly Veei or ifeesj. Then for the total R = Q, + Re, the necessary 
condition 8R/V,,, = 6R/Veeij = 0 is valid. For the one-site cluster the total CPA 
energy calculated with the use of (3) and (16) coincides with that found in [16]. For 
the n-site cluster it is seen that the condition (lo), i.e. pi(?-) = pij(r) is extremely 
important for the self-consistency of such an approach. 

3. The cluster embedding method 

We believe that the virial expansion of TP 51, is the flexible technique for the introduc- 
tion of various variational parameters. In section 2 such parameters were introduced 
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as effective fields, acting on and between lattice sites. But the consideration of the 
transfer matrix method in the one-dimension case [14] shows that it is possible to intro- 
duce variational parameters corresponding to variations of the wave function boundary 
conditions. Such an approach, which can be called the cluster embedding method, is 
discussed in this section. 

S V Beiden el a1 

Let us start from the integral form of the Schrodinger equation 

with the potential V;, existing in n lattice sites i , ,  . . . , in. Now the exclusion of V, in 
(17), i.e. the reduction of the equation to n - 1 sites with the other sites considered 
as 'host-sites', results in changing the free term 8 i  and changing the kernel function 
G+(R-IT).  Thus the direct averaging of (17) results only in the simplest approxima- 
tions such as the average l-matrix approximation. For more elaborate approximations 
the parametrization of the kernel G+ should be done, thus returning us to the sec- 
tion 2 formulae. Another way involves a proper choice of the kernel from the very 
beginning. 

To explain iurther formulae let us temporarily consider a one-dimensional contin- 
uous chain with the potentials Ud(z - zi). In the one-dimensional case one can choose 
functions G', G< = - O(& r) sin(kr)/k instead of Gt [13]. Then the reduction of the 
n lattice site would cause only the variation of IVo, and the kernels G> or G< would 
stay the same. In other words using G> permits the transformation of the Hermitian 
matrix Gt of the linear equation system for qv to the upper triangle matrices G>. 
The solution of the system with the triangle matrix can be done by the subsequent 
exclusion of variables from larger r to smaller or vice versa. Such solutions in the 
scattering theory are called the Jost solutions and they contain all the information 
about the scattering matrix. Representing in the form 

we get the linear system for a and p similar to the variable phase method or em- 
bedding method equations [17] and the limit of a(.) at r -+ -CO will coincide with 
the Jost function [13]. The exact solution of the one-dimensional chain, resulting in 
the Dayson integral equation for the phase p probability function W(p), uses such a 
representation [14. It can be checked that the use of the two nearest neighbours site 
cluster results in the Dayson equation for the probability W ( a )  if the wave function 
in the boundary points is represented as in (18). An approimate solution can be 
obtained with constants 

Let us return to the three-dimensional discrete lattice. In this case there are no 
Green functions which behave literally as G' or G<, i.e. proportionally to O(7r) 
or 0(- yr) for the arbitrary direction 7. But in the theory of the inverse scattering 
problem functions G7 

and Pk, determined from the Sl, minimum condition. 



Eleclmnic structure of d i s o n l e d  alloys 9659 

are introduced [13], which asymptotically behave properly in the cone I cosel 2 (7;) 
around y. As it is shown in [13], these functions possess the desired triangle or 
‘volterra’ property so that the solutions q T k ( v )  defined with such a kernel, could be 
represented as having a triangular Fourier transform 113). With these functions the 
S-matrix can be decomposed into a product of two matrices Q S = Q+Q analogously 
to its decomposition into a product of Jost functions. 

If the averaged potential vanishes at infinity, we can use the result of [13]: 

0, = - Im Sp(ln(H - E - io)) de 
2 s  l T  -m 

h-,(Z, I) = xe-il‘RV(R)u,(R,I) (20) 

u , ( R , ~ )  = PR+C~- , (k: ,~-  R’)V(R‘)~,(R’,~). (21) 

R 

R’ 

It is seen that equation (21) is the version of equation (17) with the kernel which, 
after the integration over angles has asymptotically the triangular form. The function 
h, is the analog of the massshell scattering matrix. It is worth noting that in the 
one-dimensional case G-, has strictly the triangular form and h, is the Jost function. 
Thus one would expect (21) to give better results than (17) when the influence of 
the effective medium is included in the boundary conditions, i.e. in the form of the 
free term in (21). The TP 0, looks nearly additive relatively to potentials in lattice 
sites. So the virial decomposition of into n-site clusters seems most natural. The 
interaction with the potentials in cluster sites is considered exactly and the influence 
of the surrounding medium is taken into account through multiplying the free term in 
(21) by the trial function W ( k ) :  

u , ( R , ~ )  = W(k)e’k‘R+ CG,(R- R‘)v(R’)u,(R’,~) (22) 
R’ 

where the W(k)  value should be found from the 0, minimization. For the tw*site 
cluster let us rewrite (20) in the form 

+m 

0, = - J/b(E - €‘I{ ( h V , ~ ) ) W ( I )  
-m 
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The variation of the equation (23) in T', gives the equation for determing W,(k): 

S V Beiden et  al 

[hz(k ,  k)U',(k) - h'(k ,k)W(k)]  = 0 
k 

With all the TY being zero, we again restore the average t-matrix approximation 
from (23). Calculations with the variational parameters in the T form should take 
less effort than those in section 2 as the Green function (19) is not changed under 
iteration. It is worth mentioning that the Schrodinger equation solution with the 
desired volterra properties can also be obtained on the basis of the regular solution 
$E [18], but the equations arising under minimization Q, in this case have the form 
of the non-local in the energy equation, which can be reduced to the Hilbert-Riman 
problem. Furthermore, they depend on the contour choice and are inconvenient for 
calculations. 

4. Calculations of the Ni,-,Cu, alloy densi ty  of states by  the CFM 

In practice in the process of the self-consistent calculations in alloys the electron 
density p(r) at various atoms should be calculated. Thus the approach developed in 
section 2 has certain advantages in comparison with that in section 3 as it directly 
deals with the Green function and thus with the electron density. For this reason the 
CFM was chosen to calculate density of states in the Nil-,Cu, alloys. It follows from 
the result in [2] that the self-consistent potentials of both components vary slightly 
with the concentration and thus can be chosen as those in pure metals. I t  simplifies the 
calculations significantly especially if the LMTO-ASA method is used. As was shown 
in [15] in this method the alloy eigenvalue problem is equivalent to the tight-binding 
(TB) form Hamiltonian with both diagonal and non-diagonal disorder. The results 
of the TB form of the LMTO-ASA-CPA calculations [19] show that the TB constants 
corresponding to the bandwidth can he substituted with their mean values 

A = C,A, + C b h b  

H;=c,+A+s(I -~s) - 'Ai  (27) 

T = Cay, + Cb7b . (26) 
The designations are as those in [20]. After such approximations the problem is the 
same as that considered in sections 2 and 3 with the Hamiltonian 

S(k)  is the structural matrix. Parameters A,,r, ,  C, were self-consistently calculated 
in pure metals, and their values are summarized in table 1. The Green function 
e E ( z )  was calculated for every z and self-energy C(z) which altered in the process of 
iteration. Integration in the Brillouin zane was made by the tetrahedron method with 
the quadratic interpolation of eomplex eigenvalues and complex eigenvectors between 
102 points in 1/48 of the zone. 

Table 1. 

CU Ni 

c Y Al la  C Y A1/2 

~ ~~~ 

s -0,1988 0.4219 0.2861 -0.1580 0.4262 0.3045 
p 0.2908 0.1116 0.2707 0.3591 0.1134 0.2842 
d -0.1425 -0.0022 0.0667 -0.0896 -0,0023 ~ 0.0771 
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To check the technique the g ( E )  CPA calculations were performed. In figure 2 the 
results are compared with that of the self-consistent KKR-CPA method [2]. We believe 
that the accuracy of our calculations for this alloy can be assumed as adequate, though 
in general the problem is not quite clear. In figure 3 we compare the CPA density of 
states with that obtained in the averaged crystal [I] approximation and with the 
averaged onesite T-matrix approach [I]. It is seen that the presence of the effective 
medium in CPA is very significant and the scattering processes at various sites are not 
independent (solid and broken curves). In figure 4 the two-site approximation (9), 
(IO), (115) and the CPA one-site approximation are shown. All the pairs of atoms 
in the first and second spheres were taken into account. The addition of the second 
sphere changes the result slightly. (At c = 0.23 and E = -0.2, g(E)  changes from 46.0 
to 47.2). Equations (IO), (Ila) were solved by the Newton method using standard 
subroutines. I t  turns out that  the corrections to CPA in the present alloy are small. 
Similar results were obtained for the non-self-consistent cluster calculations in AgPd 
alloys [21]. Nevertheless there exists a certain decrease of g(E)  in the region where the 
Cu sub-level splits from the d-band and within this interval the g ( E )  curve is closer to 
the experiment [2]. 

- 0 , 2 5  -0.15 -0.05 
Energy (nul 

Figure 2. Density of states in the Nit-,Cu, alloy for c = 0.23 by LMTO.ASA.CPA- 
full curve (present work) and by KKRCPA [?]-broken curve. 

5. Conclusion 

In the present work the cluster generalization of the CPA method on the basis of 
the variational approach is suggested. Some alternatives of including the variational 
parameters in the TP R virial expansion are proposed . The first of them corresponds to 
the CVM [4] or its simplified modification CFM [5] used in the theory of ordering alloys. 
The second approach is closer to the transfer matrix method and can be considered as 
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150 1 ( b l  

I 
1 1 I 

-0 25 -0 15 -0.05 
Energy I au I 

. 
Figure 3. Density of states in the Nii_,Cu. alloy calculated by CPA (-), with 
the mean patentid (- - - -) and with the mean t-matrix (- - -). ( a )  c = 0.23; ( b )  
e=o.a1. 

a modification of the embedded method often used in the applied mathematics. The 
calculations with the cluster containing several sites permit us firstly to evaluate the 
accuracy of the CPA method and secondly to investigate the question of the influence of 
the short-range order in the atom distribution over lattice sites on the alloy electronic 
structure [lo], as the probability of finding atoms a and b at two neighbouring lattice 
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I 

I -0 .25  -0.15 -0.05 

Energy Lou1 

Figure 4. 
duster (-) and CPA (- - - -). (a) c = 0.23; ( b )  c = 0.81. 

Density of states in the Nii-&u, alloy calculated with the tw-site 

sites can be determined from experiment or CVM calculations and can significantly 
differ from e( 1 - c)  . 

Let us discuss the perspectives of the applications of the present method 

from estimating the non-diagonal in R terms 
method expansion parameter is the value < % 

in the series expansion of the full Green function. Analogous evaluation in the cluster 
case gives the same expression with the At replaced by Atab-the difference in scat- 
tering properties of the a, b pair in comparison with those of a,  a and b, b. Generally 
speaking this difference is not the simple sum of At, and At,. The situation is similar 
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to that  in the Ising model with the competing VI and V, interactions. The Bethe 
approximation truly evaluates contributions of the order A G V, - V, < V, while the 
usual molecular field gives corrections of Ihe order of Vl/n. At the same time both 
methods are the mean field ones and are inapplicapable near the critical points E,. In 
our case both methods are inapplic~apable near singularities of the spectra where g(c) 
is, for example, % m, but in cases when the multiple scattering in two atoms 
strongly differs from that on the single atom, the application of the cluster met.hod 
may be nesessary. Such an example exists in the one-dimensional case [22]. 

But the main differences between the CPA and the cluster approach appear to be 
revealed in the calculations of configurational interactions vij, when the n-site cluster 
is embedded in the effective medium. Firstly the vij values are the 'differential' values 
which are more sensitive t o  the basis of the calculations and secondly i t  is important 
that  the effective medium should be in agreement with the cluster to gain thc self- 
consistency of the charge fluctuations. 

In the present work the cluster approximation has been discussed for the tight- 
binding Hamiltonian model (though hopping on distant sites and thus the arbitrary 
dependence of the electron bands on k were permitted) and diagonal disorder. The 
inclusion of non-diagonal disorder demands either additional variational parameters 
or the technique of using the LMTO potential function P(&) or even using the power 
of the full KKR method. Generalizations of all the expressions on these cases are quite 
obvious. 

Authors are indebted to V G Vaks for numerous discussions and for pointing out 
the inaccuracies in the initial version of this paper, and to A V Fedorov for the critical 
reading of the manuscript. 

A p p e n d i x  

The problem of calculating energies E, of certain configurations of 'impurities' a ,  
b,. . . , distributed in sites i , , i , ,  . . . , i n ,  with the averaging over all the other sites 
arises in the process of the n-site configurational interactions calculations. Example 
diagrams corresponding to such calculations are shown in figure 5(a). The simplest 
vertex r(R-, R, R)  is shown in figure 5 ( b ) .  The physical intcrpretation of these results 
is that i t  is possible for electrons to scatter on nearcst random ions under the condition 
that a certain potential is fixed in the a point. 

I 
I 

In) ( b l  

Figure 5.  (a) A typical diagram for the confiyralional inkeraclion V,,; ( b )  The 
simplest "&ex. 

The possibility of the application of the variational approach to the calculation 
ol the vertex function 7 ( R )  = I'(R,,R,R) - 1 will be illustrated below with the 
example of the 2-site cluster. Let us add the potential V,y, in the onesite cluster and 
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V,(y, - yap) in the two-site cluster with the sites R, and Rb = R, + p so that after 
the summation over all sites and clusters we obtain zero: 

Then 

S2 = Oo + (In(1- Va(l + y,)G)) + $ {(ln[l- Va(l + Y. - 7,)G 
P 

-vb(l + 7 b  - yb-p)GI) - - K ( l  + Y d q )  
-(W - VbP+ 7bYb)Gl)) ' (A21 

The variation of equation (A2) over y, with the additional condition (Al)  gives 
equations for finding 7,. As y , (R)  takes into acount the correlation in two sites 
a, R, the system of equations obtained is much more cumbersome than (10). Of 
course its numerical solution needs further investigation. But it seems to US that the 
possibility itself of finding ya illustrates the flexibility of the variational approach using 
S2 minimization. 
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